2.4  
Distance, Ruler Postulate, Segments, Rays, and Angles

2.5 
Angle Measure and the Protractor Postulate

2.6
Plane Separation, Interior of Angles, Crossbar Theorem

Homework assignment 2


 2.4  
Distance, Ruler Postulate, Segments, Rays, and Angles

Being able to measure distance is not a property that comes automatically with a geometry.  We did not have distance in any of the non-Euclidean geometries we’ve studied so far.  With these axioms we can begin measuring the distance between 2 points and the length of a segment.

The Metric Axioms join the Incidence Axioms giving us 9 axioms to work with and will give us more interesting geometries to work with.  In particular, adding D4 means that the finite geometries from the preceding part of the chapter no longer model our axioms.  
D1
Each pair of points A and B is associated with a unique real number called the distance from A to B, denoted AB.
(page 78)



D2 
For all points A and B, AB
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0 with equality only when A = B.  (page 78)

D3
For all points A and B, AB = BA.  (page 78)

D4
Ruler Postulate  (page 83)

The points of each line L may be assigned to the entire set of real numbers x, 
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 called coordinates in such a manner that


(1)
each point on L is assigned to a unique coordinate


(2)
no two points are assigned to the same coordinate

(3)
any two points on L may be assigned to the coordinate zero and a positive real number, respectively

(4)
if points A and B on L have coordinates a and b, then AB = 
[image: image3.wmf]b
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D1 says that each pair of points A and B is associated with a unique real number called the distance from A to B, and that adjacent point labels means the distance from the first point to the second point.  This means that if you see EF, you’re supposed to know right away that this means “the distance from E to F”.  So we can finally talk about distance.  We needed an axiom just like this one to continue.

D2 confirms something we feel that we already know – distances are positive numbers and that the distance from a point to itself is zero.  Since you’ve studied Euclidean geometry some of this seems obvious, but remember in a different geometry these matters might be different than what you’re used to.

D3 makes an interesting point:  distance is symmetric.  The distance from A to B is the same unique positive number as the distance from B to A.  This is not a given and there are geometries in which it is not true; we’re not going there, of course, but it is important

for you to realize that what seems obvious and true isn’t at all universal.   You’ve just been brought up Euclidean and we are building that space but there are lots of different rules out there that work just fine in their own non-Euclidean spaces.  The important thing to notice and remember is that this needs to be said in an axiom…it’s not true anywhere but where it’s stated to be an axiom.

We will spend a few moments with these first 3 axioms before going on to D4.  Often in lower level textbooks, there will be an axiom on the Triangle Inequality in with the metric axioms.  We will start cover this concept with a definition and prove the Triangle Inequality as a theorem section 3.5.

The Triangle Inequality says:

Given 3 distinct points A, B, and C, we have that AB + BC 
[image: image4.wmf]³
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with equality for collinear points.

Now, there are two models for three distinct points:  a triangle with vertices A, B, and C and a straight line with A, B, and C collinear points.  See Figure 2.15.  The triangle inequality summarizes the distance relationships for 3 distinct points in both situations.  “Greater than” is for the triangle set-up and “equal to” is how the distances among the collinear points behave.  

We do need to formalize a basic property of collinear points now that we have distances to discuss.  On page 79 is an important definition; you need to know this definition by heart.

Betweenness:


The notation for “B is between A and C” is “A – B – C”.  

Read the definition in the text p. 79.  Now let me write it out the long way for you:

Suppose A, B, and C are distinct collinear points. 

If B is between A and C, then the distance from A to B plus the distance from B to C sums to the distance from A to C.  On the other hand, if the distance from AB plus the distance from B to C sums to the distance from A to C, then we know that B is between A and C.

ASIDE:

Using “iff” (a contraction for “if and only if”, symbolized by a double headed arrow)            reduces the number of words needed by a lot.  

In symbols:

[image: image5.wmf]PQ(PQ)(QP)
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This reads:  P iff Q means the same thing as “if P then Q and simultaneously, if Q, then P”.

Be careful with the betweeness hypothesis:  “distinct, collinear points”.  This is a very firm and important point.  It gets used in a proof that is coming right up.  

If B is between A and C, then the distance from A to B plus the distance from B to C sums to the distance from A to C.  This is the first implication.

On the other hand, if the distance from AB plus the distance from B to C sums to the distance from A to C, then we know that B is between A and C. This is the second implication.

The first implication in the definition above tells you a fact that is true given that you know that B is between A and C.  The second implication gives you a test to check for betweeness when you don’t know if it’s true, you can just measure the distances and see if they add up correctly.

Note the tie-in with the Triangle Inequality.  The “or equals” case is covered by the definition of betweenness.

The three non-collinear points case is like this illustration , you get
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On page 80 we have Theorem 2.4.1 in a two-column format.  This is not the style for you to use in the homework or on a test; I will rewrite some of these for you to see how to do it and expect you to begin automatically translating into prose as the semester goes on.  I’ll also unpack the symbols in the theorem a bit, too.  Please get in the habit of doing this as you read in the text.

Theorem 2.4.1  





page 80


If B is between A and C (A – B – C), then B is between C and A (C – B – A) and neither is C between A and B (A – C – B) nor is A between B and C (B – A – C).

Proof of the first clause: 
If B is between A and C, then B is between C and A.

Since B is between A and C, by the definition of betweeness we have AB + BC = AC.  We also know that all 3 points are distinct and collinear by the same definition.  Using the facts that addition is commutative and distance is symmetric, we can rewrite the equation as follows:  CB + BA = CA.  This means that C – B – A, by the definition of betweeness.

Proof of the first part of the second clause (a proof by contradiction):

…neither is C between A and B,  nor is A between B and C.

We will assume that C is between A and B.  This means that AC + CB = AB by the definition of betweeness.  We may add BC to both sides of the equation to get 





AC + CB + BC = AB + BC.  

On the right this is actually AC from the equation in the first part of the proof above, so we now have AC + CB + BC = AC.  Subtracting AC from both sides and combining the two like terms, we have 2BC = 0.  Divide both sides by 2 and note that this means that 

B = C by D2.  This is not true because B is between A and C by hypothesis and is, thus, distinct from C by the definition of betweeness.  Our assumption is incorrect and C is not between A and B.

A similar proof shows that A is not between B and C. (
Note the definition that follows this theorem.  It is an “iff” definition.  It says that 

If the betweeness relationship A – B – C – D holds, then A – B – C, B – C – D, A – B – D, and A – C – D all hold.  
(one implication)

On the other hand if – B – C, B – C – D, A – B – D, and A – C – D all hold, then A – B – C – D is true.  
(and the implication in the reverse order).

It is MUCH, much less writing to use the abbreviation, of course.

This definition is very helpful with Theorem 2 (p.80) which is available for you to write out on your own.  

Example 1, I leave to you to read and work out the details.  It has a very clever way of handling a mass of detail that I’ll use their method next on Problem 3.  Check it out.

I will do Problem 3, page 87.
Suppose*  that you have a finite geometry with our first 3 metric axioms and you have 4 distinct collinear points A, B, C, and D with the following facts:

* often abbreviated to “spse” when you’re writing on the board

AB = AC = 4


AD = 6

BC = 8

BD = 9

CD = 1

What betweeness relationships follow?

Is the triangle inequality satisfied?

We could make an exhaustive list of all the possible betweeness relationships and check each one (12 items because it’ll be a permutation).  However – and this is illustrated in Example 1 (p. 80) – I’ll make up 4 sets of 3 points each and just check out the way the distances add up.

{A, B, C}*
AC = 4, AB = 4, BC = 8


the addition only works for CA + AB = C – A – B
*This covers A – B – C, A – C – B, and B – A – C

{A, B, D}
AB =  4, BD =  9 and AD =  6.  There’s no way these combine to add up correctly.  This unordered set covers 3 permutations of the points.

{A, C, D}
AC =  4, CD =  1, and AD =  6.  Nope.

{B, C, D}
BC =  8,  BD = 9, and CD = 1.  Ah:  BC + CD = BD.  Another betweeness relationship.

So now I’ve got C – A – B and B – C – D 

Are there any quadruples that work?  

We can check B – C – A – D , D – B – C – A, A – B – C – D, and B – C – D – A .

B – C – A – D gives BC + CA + AD = BD…8 + 4  + 6 = 9  not true


D – B – C – A:  9 + 8 + 4 = 6.  not true

B – C – D – A gives 8 + 1 + 6 = 4 not true


A – B – C – D = 4 + 8 +1 = 6 not true.

How about the Triangle Inequality and this geometry?  It says that collinear points add up correctly and you can see that these do not.  The conclusion, then, is that this particular finite geometry does not model our first 9 axioms plus the Triangle Inequality.  Our conclusion is NOT that this geometry does not or cannot exist, but rather that it doesn’t fit the framework we’re building. (
We haven’t gotten to D4 yet, but we will.  First let’s increase our axiomatic system with a few more definitions.  These use the earlier definition, betweeness.

Segments, rays, and angles:




page 81

Please know the definitions of segment, ray, angle, end points, vertex, and angle sides by heart.  

Segment 
[image: image7.wmf]AB

= {X: A – X – B, X = A, or X = B).  In words:  The segment 
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 is the set of all points X such that X is between A and B or X is one of the segment end points.  You actually need to explicitly state that that X could be A.  If you leave it that X is between A and B, then you’ve defined the OPEN segment not the segment. 

Try rewriting all of the definitions into words so you learn them well.  

The angle ABC, (ABC, is the union of two rays.  The intersection of the rays is the point B.  This definition is going to be a whole LOT of words if you take the rays all the way out to their definitions that use betweeness of points on the rays.

These are just point sets and it is possible to create new point sets from them with unions and intersections.  If, for example, you have the (ABC and you intersect it with the 
[image: image9.wmf]AC

,

(ABC ( 
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 = {A, C}, you get the two points A and C.

Extensions of segments and rays (page 82) are allowed by this new definition.  You may NOT use this definition to prove homework problem 16.  That is a point set proof about set containment.  You need to use the definitions of segment, ray, and line for that problem.

ASIDE

Here’s note about containment or subset proofs:  There’s a standard way to do these.  

Definition:  If A is a subset of B, then every element of A is also an element of B.

To prove that a set P is a subset of a set Q, select an arbitrary element of P and show that it is in Q.  Since it was arbitrary, the proof is done.

Note the definitions of open segment, open ray, and interior point in the text page 82; these can come in handy.

Axiom D-4
The Ruler Postulate  page 83

D4 brings on some startling properties.  First notice that the points of a line are placed in a one-to-one relationship with the real number line.  For the first time, we’ve got lines with an uncountable infinity of points on them – no finite geometries with 3 points on a line made of some “line stuff” will model our axioms from here on.  The points are part of a continuum and they are dense in the continuum.

Now let’s talk about this “coordinate” that each point has.  We’ll use the author’s convention of square brackets to denote the coordinate.  If point A has coordinate a, then we’ll talk about A[a] as a point with its coordinate.  This geometric coordinate is NOT a Cartesian Coordinate pair; it is a single number.  And any line with any slope can be considered a number line with a single geometric coordinate for each point…that is what the axiom is telling us. 

D-4(3) tells us that any point can be the zero of the number line and either side can be the positive side. 

Enrichment 1:

Suppose we have A – B – C – D – E and

suppose we have the following distances between the points:

AB = ½

BC = 3

CD = 2.5

DE = 1

What is AE ?  ½ + 3 + 2.5 + 1 = 7

(remember that our notation for distance is just the two point names placed side by side)

What is BD?
5.5

Here is a horizontal number line with the points on it.  Suppose we pick C and D to be the two points in the axiom above.  So C will have the coordinate zero and D is positive.  What are the coordinates of all the other points?
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BC = 3 so B has coordinate (3.  AB = ½ which puts A at (3.5.    CD = 2.5 so the real number coordinate of D is 2.5 and E is located 1 away from D so E has coordinate 3.5.

Now suppose that B and C are the points we care about.  The axiom says we can let the coordinate of B = 0.  What are the coordinates of all the other points?


Then A’s coordinate is (½ and C’s coordinate is 2.5 while D’s coordinate is 5.5 and E’s coordinate is 6.5.  Notice that the coordinate changes BUT the distance is fixed.  

I deliberately picked positive to the right because you’re familiar with that set-up BUT I did not have to do that – I could have picked positive to the left, you know.

D-4 (4) is the most surprising of the statements.  Now in our geometry we find distance with the absolute value of the difference of 2 geometric coordinates…NOT the famous College Algebra Distance formula.  This is a firm fact about our system.  We don’t use The Distance Formula from College Algebra, we subtract coordinates and take the absolute value to get the distance.

[ reminder:  the College Algebra Distance formula is
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Let’s take a minute to explore this axiom more fully than they do in the book.

Enrichment 2:
Geometric Coordinates in Euclidean Geometry
To find a geometric coordinate, we’ll use the Cartesian information about the plane and we’ll use the algebraic formula for the line.  Now you have to see that any line can be a number line and the geometric coordinate is just the number that goes with the point on any line.  It is absolutely essential, though, that the distance between the points with coordinates (1 and 5 be 6 apart whether you’re on the x-axis or you’re on a line with slope 13.  The College Algebra Distance formula answer for the distance and the D4 axiom way of calculating distance must come up with the same distance between any two given points.

Here’s how to find the geometric coordinate of any point on any line.

· Get the equation of the line, and use the slope, m, and get the Cartesian coordinates of the point in question: (a, b). 

· Calculate the Geometric Coordinate multiplier:  
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· The Geometric Coordinate of any point is (a 
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the x coordinate value times 
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For example:
Take the line  y = 2x ( 1.  The GC multiplier is 
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Each point on the line has (x, 2x ( 1) as it’s Cartesian coordinates, and it has a single number geometric coordinate.  Calculating the distance between two points using the Cartesian coordinates with the C.A. Distance Formula from algebra results in the same number as calculating the distance using the Geometric coordinates and the formula specified in D4(4).

Here are 5 points on the line y = 2x ( 1 along with their Cartesian coordinates and the geometric coordinate of each point.

Cartesian Coordinates:

Geometric Coordinate:

P1
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x(GCm) = 
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P3
(0, (1)




0

the y-intercept is always 0
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x(GCm) = ½(
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Now we will check some distances:

A.
The distance from P2 to P3

algebra distance formula:
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D4(4) formula
:
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B.
The distance from P1 = 
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 to P5 = 
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algebra distance formula:
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D4(4) formula:
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Notice that the nice natural numbers create irrational distances and the irrational coordinates have nice distances.  This is a function of the GC multiplier and the Distance Formula from algebra.

Put the 5 points on the line with their 2 coordinates, Cartesian and geometric.


Have you ever wondered why people kept on calling the point pairs “Cartesian”…it’s because there’s OTHER coordinates for points like the geometric one.  And, if you’ve got time – here’s a new plane for you – check out the Argand Plane.  It’s not the same as the Cartesian Plane.  It’s not a subject for this class, but it’s a quick Google and you can see why the Cartesian Plane is labeled so specifically – there’s OTHER planes out there, too.

Theorem 3 (p. 84) is another “iff” statement be sure to write it out with both implications joined by “and” or in two sentences.  It extends the notion of betweeness to order on the number line.  Notice that A – B – C, does NOT say that A has the smallest coordinate; it might be C that has the smallest coordinate.  It is habit to put the smallest coordinate on the left, but it is NOT a requirement of the definitions nor the axiom.

ASIDE

This book often puts valuable information and theorems in the examples…don’t skip them.

AND a comment about set equality proofs.  Two sets are equal whenever they are each a subset of the other.  So a set equality proof about two sets A and B has two parts:

one part shows A is a subset of B and the second shows B is a subset of A.  

(There’s a note about set containment proofs at the top of page 8 in the notes on this section).

Let’s walk through Text Example 2



page 84  

Theorem

If A – B – C, then the 2 rays from B passing though A and C make a line.

(i.e. 
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Now we have to prove that the union is a subset of the line (Proof A)

and then we have to prove that the line is a subset of the union (Proof B).

Let’s review the definitions:
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= {x ( x – A – B, A – x – B, x = A or x = B}
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= {x ( B – x – C, B – C – x, x = B or  x = C}
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 = {x ( x – A – C, A – x – C, A – C – x, x = A or x = C}

Now, recall Thm 1, section 2.3, page 71


If C(
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 and D (
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 EMBED Equation.DSMT4  [image: image38.wmf]Ì



 EMBED Equation.DSMT4  [image: image39.wmf]AC
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We are given that A – B – C.  Take the set 
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 and select an element x from it.

Now let’s discuss what element x might be.

If x ( 
[image: image41.wmf]AB

, then x is collinear with A and B, by homework problem 16 we have

x ( 
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 and by 2.3 Thm 1 we have 
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, then x is collinear with B and with C, by homework problem 16 and 2.3 Thm. 1, we have x ( 
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.  Thus any x we select is an element of the line.

Proof B
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Let x be any element of 
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.  

There are 7 possible places that x could be and be an element of the line:

x – A – B - C

x ( 
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x = A


ditto

A – x – B - C

ditto

x = B


ditto

A – B – x – C

x ( 
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x = C


ditto

A – B – C – x

ditto

Thus x is an element of the union.


We have proved that the sets are equal. (
Theorem 2.4.4 






page 84



If C ( 
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 and A ( C, then 
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It has good style.  It says ray names are not unique.  

AND let’s look more closely at the proof; it is a set equality proof.

We begin by setting up a coordinate system for the ray.  We’ll set A’s coordinate to be 0

(denoted A[0]) and we’ll choose that the coordinate assigned to B is some positive number b.  We can do this with D4(3) from the Ruler Postulate.  By Theorem 3 page 84, we have that the points on the ray 
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 have positive number coordinates.  By the definition of ray 
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 C is between A and B or B is between A and C or C = B, C is not A by hypothesis.  Thus C has some positive number coordinate c (denoted C[c]).

If C = B, there is nothing to prove and the rays are equal.  So let’s deal with the case that C is distinct from B:

If x is an element of 
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, then x has a positive coordinate and x is then an element of 
[image: image57.wmf]AC

uuur

 because all the elements of this ray have positive coordinates.

If y is an element of 
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, then y has a positive coordinate and it is then an element of 
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 because all the elements of this ray have positive coordinates.  

So both rays are simultaneously subsets of each other, making the two sets equal. (
I expect you to take the time to rewrite the proofs in your own words so that you make them “yours”.  Especially if the proof is a two column proof, you need to rewrite it.

Theorem 2.4.5
The Segment Construction Theorem

page 85
If 
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and 
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 are two segments and AB < CD, then there exists a unique point E on ray 
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 such that AB = CE and C – E – D.

Proof:

Let 
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and 
[image: image64.wmf]CD

 be two segments with AB < CD.  We will let C[0] and D[d] with d >0 so that CD = d (by the Ruler Postulate).  Similarly, A[0] and B[b], b > 0, so that AB = b.

Now b < d since AB < CD (Thm 2.4.3) so there is one point on 
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 that is associated with the coordinate b; we’ll call it E.  E exists and is unique by the Ruler Postulate. (
The corollary says that the midpoint of a segmente exists and is unique.  This means that you have two parts to the proof.  The first part will be to show that there is a midpoint and the second part is to show that there’s exactly one.  The first part of this proof comes directly from D4.  Let 
[image: image66.wmf]AB

 be a segment, assign A the coordinate zero and B the positive number b.  There is exactly one number that is the halfway point between 0 and b, it is b/2 and it is assigned, by axiom, to a point.  So it exists.  Now suppose there’s a second point with this coordinate.  This brings on a contradiction:  the axiom states there’s a one-to-one relationship with the real numbers and the points…so there cannot be two points assigned the same coordinate.  So there’s exactly one point at the midpoint.

Before we do the Discovery Unit, let’s look at an unusual definition of distance, The Round-Up Metric.

Problem 21 page 89  The Round-Up Metric

For all points on the x-axis, presented conveniently by the coordinates themselves, a new formula for distance is defined as follows:

d(x, y) = {the number 
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 rounded up to the nearest integer}

 In algebra, this is symbolized as:
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  meaning you round x up to the nearest integer.  For example:  
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.   Notice that this formula has the absolute value of the difference INSIDE the nearest integer higher “brackets”.

The answer to these questions is actually in the back of the book.  

Here’s an expanded version of that answer.

(a)
Does this concept satisfy the 4 metric axioms?
No, see below.

D1
Each pair of points A and B is associated with a unique real number called the distance from A to B, denoted AB.


Yes, this works.   


The distance from .5 to 1 is
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 and no other number. And the distance from (.5 to (1 is also 1 and no other number.  They can both be one apart.  This says that neither point pair can be two different distances apart from each other.  It does not say that several pairs cannot be the same distance apart.

D2 
For all points A and B, AB
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0 with equality only when A = B.


Yes this works.  The next integer higher of an absolute value is always positive 
and a coordinate minus itself is zero.  

D3
For all points A and B, AB = BA.


Using points (1 and 4:  
[image: image72.wmf]14415
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.  


This says that distance is symmetric.  The distance from A to B is the same 

unique positive real number as the distance from B to A.  And the next highest 
integer of the absolute value of a coordinate minus itself is going to be zero.

D4
Ruler Postulate  (p. 83)

The points of each line L may be assigned to the entire set of real numbers x, 
[image: image73.wmf],
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 called coordinates in such a manner that


(1)
each point on L is assigned to a unique coordinate


(2)
no two points are assigned to the same coordinate

(3)
any two points on L may be assigned to the coordinate zero and a positive real number, respectively

(4)
if points A and B on L have coordinates a and B, then AB = 
[image: image74.wmf]b

a

-

.

This all works down to D4(4).  We have a different formula by definition.  This means that what we’re working with here is NOT a model of our axioms.  We’ve stepped off into some other geometry for a moment.

(b)
Identify the segment from 2 to 5, ie 
[image: image75.wmf]25







The definition of segment 
[image: image76.wmf]AB

 is the collection of points X such that X is between 
A and B or X is an end point.  Now, the definition of between guarantees that 


AX + XB = AB.  In other words, they add up correctly.  This really matters.


We will use the Round-Up Metric distance function to find out which X’s are 
between 2 and 5.


Y =  d(x, y) = {the number 
[image: image77.wmf]xy

-

 rounded up to the nearest integer}


So we have that d(2, 5) = 3.  Let’s see if 2.5 is between 2 and 5.


d(2, 2.5) = 
[image: image78.wmf]22.5.51
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d(2.5, 5) = 
[image: image79.wmf]2.552.53
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These add to 4 which is NOT the right distance.  If 2.5 were between 2 and 5, it 
would add to 3.  So 2.5 is NOT between 2 and 5 in this geometry.  


In fact, if you 
check a few of the mixed numbers that are between 2 and 5 on the 
x axis, you will notice that none of them meet the definition for between with this 
metric.  So they’re Euclidean-between, which is what the x-axis is, but not 
between for this metric


Here’s a picture that takes the x-axis to a between-with-this-metric picture.  Only 
the solid objects are between.  The hollow dots and dotted lines are NOT between.


 (c)
Identify the segment 
[image: image80.wmf]2a

where a = 5.5

Our x-axis points are  now [2, 5.5].  This introduces fractions into our calculations which is quite different from going from natural numbers to natural numbers.

d(2, 5.5) = 4

Let’s check out some points:

Is 2.1 between 2 and 5.5?
d(2, 2.1) = 1 and d(2.1, 5.5) = 4  
No, it’s not.

Is 2.8 between 2 and 5.5?
d(2, 2.8) = 1 and d(2.8, 5.5) = 3
Yes.

Is 3.2 between 2 and 5.5?
d(2, 3.2) = 2 and d(3.2, 5.5) = 3
No, it’s not.

Is 3.7 between 2 and 5.5?
d(2, 3.7) = 2 and d(3.7, 5.5) = 2
Yes.

In fact the right hand half of every unit interval starting with a natural number between 2 and 5 is but the left hand half is not.  ( A unit interval has length one). 

The set of points between is { x(x = 2, 2.5 
[image: image81.wmf]£

 x 
[image: image82.wmf]£

3, 3.5 
[image: image83.wmf]£

 x 
[image: image84.wmf]£

 4, 4.5 
[image: image85.wmf]£

x 
[image: image86.wmf]£

5, x = 5.5}.

Clearly we’re in a non-Euclidean situation here.

(d)
Identify the segment 
[image: image87.wmf]ab

 where a = 2.5 and b = 5.5.

d(2.5, 5.5) = 3

We’ll check the unit intervals starting with natural numbers between 2.5 and 5.5.

Is 2.8 between 2.5 and 5.5?
d(2.5, 2.8) = 1 and d(2.8, 5.5) = 3
No, it’s not.

Is 3.0 between 2.5 and 5.5?
d(2.5, 3.0) = 1 and d(3.0, 5.5) = 3
No, it’s not.

Is 3.1 between 2.5 and 5.5?
d(2.5, 3.1) = 1 and d(3.1, 5.5) = 3
No, it’s not.

Is 3.5 between 2.5 and 5.5?
d(2.5, 3.5) = 1 and d(3.5, 5.5) = 2
Yes.

In 3.7 between 2.5 and 5.5?
d(2.5, 3.7) = 2 and d(3.7, 5.5) = 2
No, it’s not.

This pattern holds for the unit interval starting at 4 as well.

Is 5.1 between 2.5 and 5.5?
d(2.5, 5.1) = 3 and d(5.1, 5.5) = 1
No, it’s not.

So, we have { x(x = 2.5, x + 5.5 , x = 3.5, x = 4.5}

In the answer is the segment from 3.7 to 6.2:


[image: image88.wmf](3.7)(6.2){x

=

(x = 3.7 or x = 6.2, 
[image: image89.wmf]4.2x4.7,5.2x5.7

££££

}

notice where the numbers behind the decimals (7 and 2) in the interval show up in the answer!  This is a definite pattern for the Roundup Metric.

Generalize to arbitrary numbers a and b

There are 3 cases to consider.

· If both endpoints are natural numbers, then the segment is either endpoint and all the natural numbers between them.  (see part b)

· If one end point is a natural number and the other endpoint has a fraction between zero and one added on, then the segment is either endpoint.


If a < b are natural numbers and the added on fraction is on b, say b.f, then the segment looks like 


[image: image90.wmf](a)(b.f)

=


{x(x = a, x = b.f  or 
[image: image91.wmf]afxa1f,af1xa2,...b1fxb}
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}


The case when it’s a.f to b is similar…f is added on the right of the inquality 
though.

· If there are fractions on both endpoints:  a.d to b.f, then the segment looks like


with d > f (like the example above)


[image: image92.wmf]{x

(x = a.d, x = b.f,  a + 1 + d 
[image: image93.wmf]£

 x 
[image: image94.wmf]£

 a + 1 + f,  a + 2 + d 
[image: image95.wmf]£

 x 
[image: image96.wmf]£

 a + 2 + f, … 

b ( 1 + d 
[image: image97.wmf]£

 x 
[image: image98.wmf]£

 b ( 1 + f}



The case where d < f is similar.

(e)

Discuss the triangle inequality – which, surprisingly, works in this metric:



Here are some facts we’ll need before we begin:


A basic inequality fact:



[image: image99.wmf]xyxy
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and a second basic inequality fact:


x < y 
[image: image100.wmf]xy
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for example:


[image: image101.wmf]5.12.353

7.26.376
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Using the distance formula, we want to show that XY 
[image: image102.wmf]£

XZ + ZY whenever x, y, and z are not collinear.  Let x, y, and z be 3 non-collinear points.

d(x, y) = 
[image: image103.wmf]xy

-

éù

êú


now, inside the absolute value bars I can add 0 without changing the equality.  And I’m

going to use z ( z as my “0”.

d(x, y) = 
[image: image104.wmf]xy
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=
[image: image105.wmf]xzzy
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Using the first inequality fact, I can get

d(x, y) = 
[image: image106.wmf]xy
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=
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i.e.

d(x, y)
[image: image108.wmf]xzzy
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The right hand side is exactly the definition of the distance…so this is


d(x, y) 
[image: image109.wmf]£

 d(x, z) + d(z, y) which is really XY 
[image: image110.wmf]£

 XZ + ZY

This completes the example of a non-Euclidean metric that has the triangle inequality property. 

Moment for Discovery
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Here’s some information about another way to measure distance…what is the formula being used?  This is important to work out because we’ll be using this formula in 

Chapter 3.

The distance from (0, 8) to (10, 0) is 18.

The distance from (0, 4) to (2, 0) is 6

The distance from the origin to (5, 0) is 5.

The distance from the origin to (2, 2) is 4

The distance from (1, 12) to (9, 2) is 18.

Hint:  Sketch these points on the provided graph paper.


Note that on the x-axis, the distance from (2 to 8 is calculated 
[image: image111.wmf]2810

--=

 and the vertical distance from a to b is the absolute value of a ( b.

Email the course helper to see if you’re right in your surmise.

Homework hints:

2.
do it just like I did #3

6.
remember that these are point sets.

10.
draw the pictures first then define the resulting set on the x-axis.

16.
don’t try to do it by the definition of extension.  This is a set containment proof.


Do write sentences.

2.5 
Angle Measure and the Protractor Postulate

The next four axioms bring us the rules about angles.   This brings us to a total of 13 axioms on our way to Euclidean Geometry. 

A1 
Existency of Angle Measure
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Each angle (ABC is associated with a unique real number between 0 and 180, called its measure and denoted m(ABC,  No angle can have measure 0 or 180.

A2 
Angle Addition Postulate
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If D lies in the interior of (ABC, then m(ABD + m(DBC = m(ABC.  Conversely, if 

m(ABD + m(DBC = m(ABC, then ray 
[image: image112.wmf]BD

 passes through an interior point of  (ABC.

Note the implication structure; you must know or prove that D is an interior point before you can go ahead and use this axiom.

A3
Protractor Postulate
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The set of rays 
[image: image113.wmf]AX

 lying on one side of a given line 
[image: image114.wmf]AB

, including ray 
[image: image115.wmf]AB

, may be assigned to the entire set of real numbers x, 
[image: image116.wmf]180

x
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<

£

, called coordinates, in such a manner that

(1)
each ray is assigned to a unique coordinate

(2)
no two rays are assigned to the same coordinate

(3)
the coordinate of 
[image: image117.wmf]AB

 is 0

(4)
if rays 
[image: image118.wmf]AC

and 
[image: image119.wmf]AD

have coordinates c and d, then m(CAD = 
[image: image120.wmf]d

c

-

.

A4 
Linear Pair Axiom
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A linear pair of angles is a supplementary pair.

Most students feel that this is obvious from any drawing of a linear pair BUT note that it has to be put in writing, axiom-strength.  It’s not provable and you KNOW that pictures can be misleading.

There are many definitions in this section.  

Here are some of the most important ones in alphabetical order:

Adjacent angles:
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Two distinct angles with a common side are said to be adjacent angles.


Angle bisector:
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An angle bisector for (ABC is any ray 
[image: image121.wmf]BD

lying between the sides of the angle in such a way that m(ABD =m(DBC.

Betweeness for rays:
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For any three rays 
[image: image122.wmf]BC

and

,

BD

,

BA

 (each having the common endpoint B) we say that ray 
[image: image123.wmf]BD

lies between the other two rays iff the rays are distinct and 

m(ABD + m(BDC = m(ABC.

Complementary Angles:
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Two angles whose measures sum to 90 are called complementary angles.  It is not necessary that the angles be adjacent for them to be complements.  A mnemonic device to keep track of complements and supplements is to note that when the words are in alphabetical order, then the angle sums are in numerical order:  90 and 180, respectively.

Interior point of an angle:
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A point D is an interior point of (ABC iff there exists a segment 
[image: image124.wmf]EF

containing D as an interior point* that extends from one side of the angle to the other.  (which is to say:

E and F are distinct from the vertex, B.  
[image: image125.wmf]BA

E

Î

 and 
[image: image126.wmf]BC

F

Î

.  see Figure 2.26, page 91).

*see page 82 for the definition of interior point of a segment

Linear Pair
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Two angles are said to form a linear pair iff they have one side in common and the other two sides are opposite rays.

n.b.  an arbitrary linear pair looks like this:


NOT like this:



This is the special case of perpendicular lines.  There’s nothing arbitrary about it at all.

Opposite rays
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If A – B – C, then the union of the two rays 
[image: image127.wmf]BC

and

AB

 is a straight line.  We call any two such rays opposite rays.

Perpendicular lines:
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Two distinct lines, L and M, are said to be perpendicular iff they contain the sides of a right angle. This is denoted L ( M.

Right angle:






page 97

A right angle is any angle with measure 90.

Supplementary Angles:
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Two angles whose angle measures sum to 180 are called supplementary angles.  It is NOT necessary for angles to be a linear pair to be supplements.

Vertical angles
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Two angles having the sides of one opposite the sides of the other are called vertical angles.  See figure 2.37, (1 and (2 are a vertical pair.  (3 and the unnamed (4 are also vertical angles.

The Theorems are many as well.  Here’s a summary and some commentary.

Text Example 1 is a little theorem.  
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Note the nice prose proof.  

Theorem 2.5.1
Angle Construction Theorem


page 94

For any two angles (ABC and (DEF such that m(ABC < m(DEF, there is a unique ray 
[image: image128.wmf]EG

 such that m(ABC = m(GEF and ray 
[image: image129.wmf]EG

 is in the interior of angle (EDF.

Rewriting the proof in prose is a homework problem.

Corollary:
The angle bisector exists and is unique.

Theorem 2.5.2
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Two angles that are supplementary, or complementary, to the same angle have equal measure.

There are 3 angles here.  One is the angle that the other two are supplements to.

Theorem 2.5.3
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If line 
[image: image130.wmf]BD

 meets segment 
[image: image131.wmf]AC

 at an interior point B on that segment, then the lines are perpendicular iff the adjacent angles at B have equal measures.

This is an elegant prose proof.  Note that the theorem does NOT say that the measure is 90, it just says “equal”.  The actual measure gets stated in the proof.  Also, the perpendicular to the segment IS unique – that part is proved in Problem 19 in the back of the book.  The proof goes, as uniqueness proofs always do, suppose there’s a second line perpendicular to the segment at B…

Theorem 2.5.4
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Given a point A on line L, there exists a unique line M perpendicular to L at A.

This will be a two part proof.  One part will prove that at least one perpendicular exists and the second part will show that the assumption that there is a second line leads to a contradiction.

Homework hints

Problem 8

part c is very important, don’t skip it

Problem 10



Problem 12

a 2-part proof:  A. existence, B. uniqueness

Section 2.6


Plane Separation, Interior of Angles, Crossbar Theorem

This is an important definition:

A set K in our universal set S is called convex iff for each point A in K and distinct point B in K, the entire segment 
[image: image132.wmf]AB

is in K (which is to say 
[image: image133.wmf]K

AB

Í

).

Some examples:

A circle is NOT convex.    A diameter has two points on the circle and none of the interior points of the diameter is a point of the circle.

The interior of a circle IS convex.



A square is NOT convex.  

A segment IS convex.

The interior of a rectangle IS convex.  

The interior of this non-convex 5-sided polygon is not convex.  See the segment that goes outside of the set?


Here is another of those un-named but-oh-so important theorems (page 105)

The intersection of any two distinct convex sets is convex.

Proof:

Let A and B be two convex sets.

Select two distinct points, x and y, that are elements of 
[image: image134.wmf]B

A

Ç

.

Since x and y are in BOTH A and B, then 
[image: image135.wmf]xy

is in A (because A is convex) 

and 
[image: image136.wmf]xy

 is in B (because B is convex).  Thus 
[image: image137.wmf]xy

 is in the intersection. (
The crucial step is to realize that you must select both x and y from the intersection, because the intersection is a “given”.  If you select x in set A, then it might not also be a point of set B.

Axiom H1
The Plane Separation Axiom
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Let L be any line lying in plane P.  The set of all points in P not on L consists of the union of two subsets 
[image: image138.wmf]1

H

and 
[image: image139.wmf]2

H

of P such that:

a.
Each set is convex.

b.
The sets are disjoint (i.e. they share no points)

c.
If A is in 
[image: image140.wmf]1

H

 and B is in 
[image: image141.wmf]2

H

, then the segment 
[image: image142.wmf]AB

intersects the line L.

Notation:

Given line L, and two points NOT on L and in opposite half-planes, we may discuss the half-planes in the following notation

H(A, 
[image: image143.wmf]L

) is the half plane that contains A.  H(B, 
[image: image144.wmf]L

) is the other half-plane that contains B.  This notation is quite handy and we’ll use it in this section quite a bit.

Properties of Half-planes

Lemma 2.6.1
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If A – B – C holds and a line L passes through B but not A, then A and C lie on opposite sides on the line L.  (i.e. A is in 
[image: image145.wmf]1

H

 and C is in 
[image: image146.wmf]2

H

).

[This is an elimination proof…see page 58 in the text for a discussion of these]

Let A, B, C and L be as described.

Suppose A is in 
[image: image147.wmf]1

H

.  Now we know that the plane that contains the line and contains the points A, B, and C is decomposed into 3 disjoint sets: 
[image: image148.wmf]1

H

, 
[image: image149.wmf]2

H

, and L.

So C is in 
[image: image150.wmf]1

H

 or is in 
[image: image151.wmf]2

H

, or is on the line L.  This is the entire list of outcomes for where C could be.

Suppose C is in 
[image: image152.wmf]1

H

.  Now 
[image: image153.wmf]1

H

 is a convex set, so that means that 
[image: image154.wmf]AC

 is in 
[image: image155.wmf]1

H

.  Which puts B in 
[image: image156.wmf]1

H

…which isn’t true since, by hypothesis B is on line L.

Suppose C is on the line L.  Well, that causes a real problem.  C and A are collinear by the definition of betweenness which puts A on L…which it’s not, by hypothesis.

Thus C is in 
[image: image157.wmf]2

H

 by elimination. (
Note that when I write a proof in the Notes, it’s different than the way it’s written in the book.  This is the way to learn proofs.  Rewrite them in your own words…in a way that makes it clear to you what the strategy is and what the key ideas are.

Theorem 2.6.1
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If a point A lines on a line L and a point B lies on one of the half planes determined

by L, then, except for A, the entire open ray 
[image: image158.wmf]AB

(or half open segment) lies in the same half plane

Proof:



[another elimination proof]

Let point A line on the line L and point B be in 
[image: image159.wmf]1

H

.  Using the Ruler Postulate, we may find C such that A – C – B.  Now C is in 
[image: image160.wmf]1

H

, on the line L, or in 
[image: image161.wmf]2

H

.

Suppose C is on L.  This puts B on L since C and B are collinear by betweenness.  

Thus we know that C is not on L.

Suppose C is n 
[image: image162.wmf]2

H

.  Then, by Axiom D – 1, c. we have a point E on L with 

A – C – E – B, which would put B on L by betweenness.  Again, a contradiction.

So C is in 
[image: image163.wmf]1

H

. 

A similar argument works for using the Ruler Postulate to find point F such

that A – B – F.

This puts both the segment 
[image: image164.wmf]AB

 and the ray 
[image: image165.wmf]AB

 in 
[image: image166.wmf]1

H

. (
Corollary 2.6.1
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Let B and F lie on opposite sides of the line L and let A and G be any two distinct points of L.  Then segment 
[image: image167.wmf]GB

 and ray 
[image: image168.wmf]AF

 have no points in common.

The proof is quite nice.  Please read it carefully, rewrite it,  and make sure you understand it.  We will use this corollary at the end of this section in proving The Crossbar Theorem.

ASIDE:

This series:  Lemma, Theorem, Corollary is quite common in mathematics.  A Lemma is a “prequel”; it sets the stage for the theorem and is often used to get the really long, sticky, and hard points made in advance.  The Theorem is the important statement and, since all the messy work was done in the Lemma, it’s proof is shorter and more elegant.  A Corollary is a “sequel”.  It’s generally a direct consequence of the Theorem but tossing it in with the Theorem statement would distract from the impact of the Theorem.  So it comes in at the end and the proof generally relies heavily on the Theorem.

Theorem 2.6.2

The Postulate of Pasch

page 107 

This is a know by heart theorem.  It may show up as a test question.  It is not in the book, but it is generally available on the internet.  I have added in one note to make sure that students actually see something that the author takes as obvious from his use of the word “interior”; in my experience, it’s not obvious to most students.  This is a very elegant elimination proof.

Proof

Suppose A, B, and C are any 3 distinct noncollinear points in a plane and L is any line in that plane that passes through an interior point D of one of the sides, 
[image: image169.wmf]AB

, of the triangle

(ABC.  Then L meets either 
[image: image170.wmf]AC

 at some interior point E or 
[image: image171.wmf]BC

at some interior point F, the cases being mutually exclusive.

[side note:  I feel it necessary to point out that L does not intersect vertex C, since C is NOT an interior point of either segment.]


Let A, B, C, D, and L be as described.  Note that A – D – B.  Chose 
[image: image172.wmf]1

H

 to be the A side of L and note that 
[image: image173.wmf]2

H

= H(B, L).  Now C is not on L so by Axiom H – 1, then C is in 
[image: image174.wmf]1

H

or in 
[image: image175.wmf]2

H

.  

Suppose C is in 
[image: image176.wmf]1

H

.  By part C of Axiom H – 1, then B is in 
[image: image177.wmf]2

H

 and L meets 
[image: image178.wmf]BC

 at F and can’t intersect 
[image: image179.wmf]AC

 by the convexity of 
[image: image180.wmf]1

H

.  This works.

Now, suppose C is in 
[image: image181.wmf]2

H

.  Then A is in 
[image: image182.wmf]1

H

 and L meets 
[image: image183.wmf]AC

 at E and can’t meet


[image: image184.wmf]BC

 by the convexity of 
[image: image185.wmf]2

H

.  This works, too, and shows that the situations cannot both occur. (
Now, on page 108, we have the definition of the interior of an angle – since we’ve now got the definition of a convex set, we can talk about a set interior in a rigorous way.

The interior of (ABC is the collection of all points x that simultaneously lie on the A side of 
[image: image186.wmf]BC

 and the C side of 
[image: image187.wmf]BA

.  

In set builder notation:

int(ABC = H(A, 
[image: image188.wmf]BC

) ( H(C, 
[image: image189.wmf]BA

) 

Since the interior of the angle is the intersection of two convex sets, we know it is a convex set.

Theorem 2.6.3
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The proof is nicely done.  Please analyze it completely.

Theorem 2.6.4
The Crossbar Theorem

page 109

If D lies in the interior of (BAC, then ray 
[image: image190.wmf]AD

 meets the segment 
[image: image191.wmf]BC

 at some interior point E..

Illustration of the proof:

[image: image192.wmf]A

B

C

E

D


Proof:

Let (BAC and point D be as described.  Locate point G such that G – A – C on the extension of the side 
[image: image193.wmf]AC

.  Connect G and B.  Extend 
[image: image194.wmf]AD

 and locate point F such that

F – A – D.  (by definition of extension, p. 82).

[image: image195.wmf]A

B

C

E

D

F

G


Note that I’ve created (BGC and I’ve got the set-up for the Postulate of Pasch with line


[image: image196.wmf]AD

(compare the sketches).  

By the Postulate of Pasch, 
[image: image197.wmf]AD

intersects one of 
[image: image198.wmf]BC

or 
[image: image199.wmf]BG

 exclusively. 

By using Corollary 2.6.1 on p. 107, we may conclude that  
[image: image200.wmf]AD

 ( 
[image: image201.wmf]GB

 is empty.  

We get to this conclusion by cleverly seeing two different applications of the corollary with two different pairs of lines being used each time.

Here’s the first use of the corollary:

See that
[image: image202.wmf]AFGB

Ç

uuur

 is empty:  


This is part of the sketch above.

And the second use:

[image: image203.wmf]ADGB

Ç

uuur

 is empty).  


This is a different part of the initial sketch

Thus we may conclude that  
[image: image204.wmf]AD

 ( 
[image: image205.wmf]GB

 is empty and that 
[image: image206.wmf]BC

AD

Ç

 

at some interior point D as guaranteed by the Postulate of Pasch.

Now E is on ray 
[image: image207.wmf]AF

 or on ray 
[image: image208.wmf]AD

.  We know that point F is in a different half plane from 
[image: image209.wmf]BC

 so E is on ray 
[image: image210.wmf]AD

 as desired. (
Homework Hints:

Problem 4
This is a set containment proof.  It has 2 parts.  

Problem 8
The hint is in the book.

Problem 10
Sketches will help on this.
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